Physical Review Research (May 2022)

All-optical Stückelberg spectroscopy of strongly driven Rydberg states

  • Ulrich Bengs,
  • Serguei Patchkovskii,
  • Misha Ivanov,
  • Nickolai Zhavoronkov

DOI
https://doi.org/10.1103/PhysRevResearch.4.023135
Journal volume & issue
Vol. 4, no. 2
p. 023135

Abstract

Read online Read online

The AC Stark shift of electronic levels is ubiquitous in the interaction of intense light fields with atoms and molecules. As the light intensity changes on the rising and falling edges of a femtosecond laser pulse, it shifts the Rydberg states in and out of multiphoton resonances with the ground state. The two resonant pathways for transient excitation arising at the leading and the trailing edges of the pulse generate Young's type interference, generally referred to as the Stückelberg oscillations. Here we report the observation of the Stückelberg oscillations in the intensity of the coherent free-induction decay following resonant multiphoton excitation. Moreover, combining the experimental results with accurate numerical simulations and a simple model, we use the Stückelberg oscillations to recover the population dynamics of strongly driven Rydberg states inside the laser pulse by all-optical measurements after the end of the pulse. We demonstrate the potential of this spectroscopy to characterize lifetimes of Rydberg states dressed by laser fields with strengths far exceeding the Coulomb field between the Rydberg electron and the core.