Frontiers in Neurorobotics (Jul 2015)
Biohybrid control of general linear systems using the adaptive filter model of cerebellum
Abstract
The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems such as the vestibulo-ocular reflex (VOR) and to sensory processing problems such as the adaptive cancellation of reafferent noise. It has also been successfully applied to problems in robotics such as adaptive camera stabilisation and sensor noise cancellation. In previous applications to inverse control problems the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilises the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks.
Keywords