Molecules (Aug 2021)

Structure, Luminescent Sensing and Proton Conduction of a Boiling-Water-Stable Zn(II) Metal-Organic Framework

  • Hua-Qun Zhou,
  • Sai-Li Zheng,
  • Can-Min Wu,
  • Xin-He Ye,
  • Wei-Ming Liao,
  • Jun He

DOI
https://doi.org/10.3390/molecules26165044
Journal volume & issue
Vol. 26, no. 16
p. 5044

Abstract

Read online

A novel Zn(II) metal-organic framework [Zn4O(C30H12F4O4S8)3]n, namely ZnBPD-4F4TS, has been constructed from a fluoro- and thiophenethio-functionalized ligand 2,2′,5,5′-tetrafluoro-3,3′,6,6′-tetrakis(2-thiophenethio)-4,4′-biphenyl dicarboxylic acid (H2BPD-4F4TS). ZnBPD-4F4TS shows a broad green emission around 520 nm in solid state luminescence, with a Commission International De L’Eclairage (CIE) coordinate at x = 0.264, y = 0.403. Since d10-configured Zn(II) is electrochemically inert, its photoluminescence is likely ascribed to ligand-based luminescence which originates from the well-conjugated system of phenyl and thiophenethio moieties. Its luminescent intensities diminish to different extents when exposed to various metal ions, indicating its potential as an optical sensor for detecting metal ion species. Furthermore, ZnBPD-4F4TS and its NH4Br-loaded composite, NH4Br@ZnBPD-4F4TS, were used for proton conduction measurements in different relative humidity (RH) levels and temperatures. Original ZnBPD-4F4TS shows a low proton conductivity of 9.47 × 10−10 S cm−1 while NH4Br@ZnBPD-4F4TS shows a more than 25,000-fold enhanced value of 2.38 × 10−5 S cm−1 at 40 °C and 90% RH. Both of the proton transport processes in ZnBPD-4F4TS and NH4Br@ZnBPD-4F4TS belong to the Grotthuss mechanism with Ea = 0.40 and 0.32 eV, respectively.

Keywords