Heliyon (Aug 2024)
Exploring Bryophyllum pinnatum compounds as potential inhibitors for Vespula vulgaris allergen proteins: A systematic computational approach
Abstract
Vespula vulgaris (V. vulgaris), commonly known as the common wasp, poses a significant health threat due to its venom-induced allergic reactions. This research focused on the exploration of bioactive compounds from Bryophyllum pinnatum as potential inhibitors for V. vulgaris allergen proteins, including Phospholipase A1 (Ves V1), Hyaluronoglucosaminidase (Ves V2), and Antigen 5 (Ves V5). Through a multidisciplinary approach involving literature reviews, molecular docking analyses, ADMET assessments and Molecular Dynamics Simulations (MDS) of 100ns we identified two promising drug candidates from four bioactive compounds- Bryophyllin A, Bryophyllin B, Bryotoxin A, and Bryotoxin B of Bryophyllum pinnatum. Molecular docking results revealed strong binding interactions, with Bryophyllin B and Bryotoxin A consistently exhibiting the highest affinity (−9.6 kcal/mol and −10.0 kcal/mol) across the allergen proteins. ADMET analyses highlighted Bryophyllin B as a favorable candidate, showing high absorption (HIA: 92.1 %), minimal metabolic interactions (CYP1A2: No), and a low toxicity profile (LD50 (rat): 2.431). MDS analysis revealed Bryophyllin B and Bryotoxin A as promising drug inhibitors, exhibiting the highest binding stability with the allergen proteins of V. vulgaris, as indicated by the lowest Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration (RG) values and highest protein-ligand contacts. Our study provides valuable insights into the therapeutic potential of Bryophyllum pinnatum compounds as inhibitors for V. vulgaris allergen proteins having two promising candidates- Bryophyllin B and Bryotoxin A.