Journal of Engineering Science and Technology (Jul 2018)

BIG DATA IN SMART CITIES: A SYSTEMATIC MAPPING REVIEW

  • SARFRAZ N. BROHI,
  • MERVAT BAMIAH,
  • MUHAMMAD N. BROHI

Journal volume & issue
Vol. 13, no. 7
pp. 2246 – 2270

Abstract

Read online

Big data is an emerging area of research and its prospective applications in smart cities are extensively recognized. In this study, we provide a breadth-first review of the domain “Big Data in Smart Cities” by applying the formal research method of systematic mapping. We investigated the primary sources of publication, research growth, maturity level of the research area, prominent research themes, type of analytics applied, and the areas of smart cities where big data research is produced. Consequently, we identified that empirical research in the domain has been progressing since 2013. The IEEE Access journal and IEEE Smart Cities Conference are the leading sources of literature containing 10.34% and 13.88% of the publications, respectively. The current state of the research is semi-matured where research type of 46.15% of the publications is solution and experience, and contribution type of 60% of the publications is architecture, platform, and framework. Prescriptive is least whereas predictive is the most applied type of analytics in smart cities as it has been stated in 43.08% of the publications. Overall, 33.85%, 21.54%, 13.85%, 12.31%, 7.69%, 6.15%, and 4.61% of the research produced in the domain focused on smart transportation, smart environment, smart governance, smart healthcare, smart energy, smart education, and smart safety, respectively. Besides the requirement for producing validation and evaluation research in the areas of smart transportation and smart environment, there is a need for more research efforts in the areas of smart healthcare, smart governance, smart safety, smart education, and smart energy. Furthermore, the potential of prescriptive analytics in smart cities is also an area of research that needs to be explored.

Keywords