PLoS ONE (Jan 2012)

Pseudoabsence generation strategies for species distribution models.

  • Brice B Hanberry,
  • Hong S He,
  • Brian J Palik

DOI
https://doi.org/10.1371/journal.pone.0044486
Journal volume & issue
Vol. 7, no. 8
p. e44486

Abstract

Read online

BackgroundSpecies distribution models require selection of species, study extent and spatial unit, statistical methods, variables, and assessment metrics. If absence data are not available, another important consideration is pseudoabsence generation. Different strategies for pseudoabsence generation can produce varying spatial representation of species.MethodologyWe considered model outcomes from four different strategies for generating pseudoabsences. We generating pseudoabsences randomly by 1) selection from the entire study extent, 2) a two-step process of selection first from the entire study extent, followed by selection for pseudoabsences from areas with predicted probability ConclusionsPseudoabsence generation strategy completely affected the area predicted as present for species distribution models and may be one of the most influential determinants of models. All the pseudoabsence strategies produced mean AUC values of at least 0.87. More importantly than accuracy metrics, the two-step strategies over-predicted species presence, due to too much environmental distance between the pseudoabsences and recorded presences, whereas models based on random pseudoabsences under-predicted species presence, due to too little environmental distance between the pseudoabsences and recorded presences. Models using pseudoabsences from surveyed plots produced a balance between areas with high and low predicted probabilities and the strongest relationship between density and area with predicted probabilities ≥75%. Because of imperfect accuracy assessment, the best assessment currently may be evaluation of whether the species has been sufficiently but not excessively predicted to occur.