Materials Research (Jul 1999)

Controlled modification of the structure of polymer surfaces by chemically grafting inorganic species

  • Rodrigo Lambert Oréfice,
  • Anthony Brennan

DOI
https://doi.org/10.1590/S1516-14391999000300007
Journal volume & issue
Vol. 2, no. 3
pp. 153 – 157

Abstract

Read online

Many chemical and physical methods, such as plasma, e-beam, sputtering, CVD and others, have been used to modify the structure of polymer surfaces by depositing thin inorganic films. Most of these techniques are based upon the use of high energy sources that ultimately can damage either chemically or physically polymer surfaces. Moreover, these methods are usually not versatile enough to allow the design of structurally and chemically tailored surfaces through the control of the distribution of chemical functionalities throughout the surface. In this work, inorganic species were introduced onto polymer substrates in a controlled manner by performing a sequence of chemical reactions at the surface. Sulfonation followed by silanization reactions were used to graft alkoxysilane species at the surface of poly(aryl sulfones). The heterogeneous chemical modification of poly(aryl sulfones) was monitored by FTIR-ATR (Attenuated Total Reflection - FTIR). Model compounds were used to study the chemical reactions occurring during the grafting procedure. The results showed that the developed procedure can allow a controlled introduction of inorganic species onto polymer surfaces. Furthermore, in order to prove that this procedure enables the deposition of specific chemical functionalities onto polymer surfaces that can be used to create chemically and structurally tailored surfaces, silicate films were deposited on previously silanated PAS bioactive glass composites. In vitro tests showed that the surface modified composite can enhance the rates of hydroxy-carbonate-apatite precipitation.

Keywords