BMC Medical Imaging (Jan 2023)
Establishment of local diagnostic reference levels for common adult CT examinations: a multicenter survey in Addis Ababa
Abstract
Abstract Background In medical imaging, a computed tomography (CT) scanner is a major source of ionizing radiation. All medical radiation exposures should be justified and optimized to meet the clinical diagnosis. Thus, to avoid unnecessary radiation doses for patients, diagnostic reference levels (DRLs) have been used. The DRLs are used to identify unusually high radiation doses during CT procedures, which are not appropriate for the clinical diagnosis. It has been successfully implemented in Europe, Canada, Australia, the United States, several industrialized countries, and a few underdeveloped countries. The present study aimed to establish DRLs for the head, chest, and abdominopelvic (AP) CT procedures in Addis Ababa, Ethiopia. Methods A pilot study identified the most frequent CT examinations in the city. At the time of the pilot, eighteen CT scan facilities were identified as having functioning CT scanners. Then, on nine CT facilities (50% of functional CT scanners), a prospective analysis of volume CT dose index (CTDIvol) and dose length product (DLP) was performed. We collected data for 838 adult patients’ head, chest, and AP CT examinations. SPSS version 25 was used to compute the median values of the DLP and CTDIvol dose indicators. The rounded 75th percentile of CTDIvol and DLP median values were used to define the DRLs. The results are compared to DRL data from the local, regional, and international levels. Result The proposed DRLs using CTDIvol (mGy) are 53, 13, and 16 for the head, chest, and AP examinations respectively, while the DLP (mGy.cm) for the respective examinations were 1210, 635, and 822 mGy.cm. Conclusion Baseline CT DRLs figures for the most frequently performed in Addis Ababa were provided. The discrepancies in dose between CT facilities and as well as between identical scanners suggests a large potential for dose optimization of examinations. This can be actually achieved through appropriate training of CT technologists and continuous dose audits.
Keywords