Heliyon (Jun 2024)
Investigating the therapeutic mechanism of Jiedu-Quyu-Ziyin Fang on systemic lupus erythematosus through the ERα-miRNA-TLR7 immune axis
Abstract
Jiedu-Quyu-Ziyin Fang (JQZF) is a formula that has been empirically used for the treatment of SLE in clinical practice. JQZF has become an approved hospital prescription in China. Fifteen MRL/lpr mice were randomly divided into three groups: Model, JQZF, and JQZF + GC, with five mice in each group. Five MRL/MPJ mice were used as the Blank group. After 8 weeks of administration, peripheral blood serum was collected to detect anti-dsDNA antibodies and complement C3 levels. Spleen B cells were collected to detect the expression of TLR7 and NF-κBp65 mRNA, and correlation analysis was performed. Transcriptome sequencing analysis was also performed on spleen B cells. Further, key miRNA and key gene mRNA expression were detected by RT-qPCR, and key protein expression levels were detected by Western blot method. Bioinformatics methods predicted that ESR1 is a key target of JQZF action on SLE, hsa-miR-146a-5p is one of the key miRNAs, and KEGG pathway analysis showed that NF-κB signaling pathway is its key signaling pathway. Transcriptome sequencing of MRL/lpr mouse spleen B cells revealed that the differential genes between the JQZF and Model groups were enriched in Toll-like receptor signaling pathway, NF-κB signaling pathway, Estrogen signaling pathway, etc. Animal studies show that JQZF treatment significantly boosts serum C3 and lowers anti-dsDNA antibodies (P < 0.01). On the molecular level, JQZF suppresses TLR7 and NF-κBp65 mRNA in spleen B cells, with TLR7 mRNA positively linked to anti-dsDNA titers and negatively to serum C3. Further cellular work demonstrates that JQZF reverses the increased IRAK1 and TRAF6 expression seen after miR146a inhibition. Additionally, post-ERα inhibition, JQZF continues to upregulate miR146a and more significantly reduces TLR7 mRNA expression (P < 0.01), pointing to ERα′s pivotal role in the miR146a-TLR7 axis. These results indicate JQZF alleviates SLE by adjusting the ERα-miR146a-TLR7 loop, showcasing its mechanism and therapeutic potential for SLE.