Journal of Translational Medicine (Jun 2024)

Modulation of innate immunity related genes resulting in prophylactic antimicrobial and antiviral properties

  • Veronica Ferrucci,
  • Marco Miceli,
  • Chiara Pagliuca,
  • Orazio Bianco,
  • Luigi Castaldo,
  • Luana Izzo,
  • Marica Cozzolino,
  • Carla Zannella,
  • Franca Oglio,
  • Antonio Polcaro,
  • Antonio Randazzo,
  • Roberta Colicchio,
  • Massimiliano Galdiero,
  • Roberto Berni Canani,
  • Paola Salvatore,
  • Massimo Zollo

DOI
https://doi.org/10.1186/s12967-024-05378-2
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 30

Abstract

Read online

Abstract Background The innate immunity acts during the early phases of infection and its failure in response to a multilayer network of co-infections is cause of immune system dysregulation. Epidemiological SARS-CoV-2 infections data, show that Influenza Virus (FLU-A-B-C) and Respiratory Syncytial Virus (RSV) are co-habiting those respiratory traits. These viruses, especially in children (mostly affected by ‘multi-system inflammatory syndrome in children’ [MIS-C] and the winter pandemic FLU), in the aged population, and in ‘fragile’ patients are causing alteration in immune response. Then, bacterial and fungal pathogens are also co-habiting the upper respiratory traits (e.g., Staphylococcus aureus and Candida albicans), thus contributing to morbidity in those COVID-19 affected patients. Methods Liquid chromatography coupled with high-resolution mass spectrometry using the quadrupole orbital ion trap analyser (i.e., UHPLC-Q-Orbitrap HRMS) was adopted to measure the polyphenols content of a new nutraceutical formula (Solution-3). Viral infections with SARS-CoV-2 (EG.5), FLU-A and RSV-A viruses (as performed in BLS3 authorised laboratory) and real time RT-PCR (qPCR) assay were used to test the antiviral action of the nutraceutical formula. Dilution susceptibility tests have been used to estimate the minimum inhibitory and bactericidal concentration (MIC and MBC, respectively) of Solution-3 on a variety of microorganisms belonging to Gram positive/ negative bacteria and fungi. Transcriptomic data analyses and functional genomics (i.e., RNAseq and data mining), coupled to qPCR and ELISA assays have been used to investigate the mechanisms of action of the nutraceutical formula on those processes involved in innate immune response. Results Here, we have tested the combination of natural products containing higher amounts of polyphenols (i.e., propolis, Verbascum thapsus L., and Thymus vulgaris L.), together with the inorganic long chain polyphosphates ‘polyPs’ with antiviral, antibacterial, and antifungal behaviours, against SARS-CoV-2, FLU-A, RSV-A, Gram positive/ negative bacteria and fungi (i.e., Candida albicans). These components synergistically exert an immunomodulatory action by enhancing those processes involved in innate immune response (e.g., cytokines: IFNγ, TNFα, IL-10, IL-6/12; chemokines: CXCL1; antimicrobial peptides: HBD-2, LL-37; complement system: C3). Conclusion The prophylactic antimicrobial success of this nutraceutical formula against SARS-CoV-2, FLU-A and RSV-A viruses, together with the common bacteria and fungi co-infections as present in human oral cavity, is expected to be valuable.

Keywords