Advanced Science (Feb 2024)

Electron‐Sponge Nature of Polyoxometalates for Next‐Generation Electrocatalytic Water Splitting and Nonvolatile Neuromorphic Devices

  • Waqar Ahmad,
  • Nisar Ahmad,
  • Kun Wang,
  • Sumaira Aftab,
  • Yunpeng Hou,
  • Zhengwei Wan,
  • Bei‐Bei Yan,
  • Zhao Pan,
  • Huai‐Ling Gao,
  • Chen Peung,
  • Yang Junke,
  • Chengdu Liang,
  • Zhihui Lu,
  • Wenjun Yan,
  • Min Ling

DOI
https://doi.org/10.1002/advs.202304120
Journal volume & issue
Vol. 11, no. 5
pp. n/a – n/a

Abstract

Read online

Abstract Designing next‐generation molecular devices typically necessitates plentiful oxygen‐bearing sites to facilitate multiple‐electron transfers. However, the theoretical limits of existing materials for energy conversion and information storage devices make it inevitable to hunt for new competitors. Polyoxometalates (POMs), a unique class of metal‐oxide clusters, have been investigated exponentially due to their structural diversity and tunable redox properties. POMs behave as electron‐sponges owing to their intrinsic ability of reversible uptake‐release of multiple electrons. In this review, numerous POM‐frameworks together with desired features of a contender material and inherited properties of POMs are systematically discussed to demonstrate how and why the electron‐sponge‐like nature of POMs is beneficial to design next‐generation water oxidation/reduction electrocatalysts, and neuromorphic nonvolatile resistance‐switching random‐access memory devices. The aim is to converge the attention of scientists who are working separately on electrocatalysts and memory devices, on a point that, although the application types are different, they all hunt for a material that could exhibit electron‐sponge‐like feature to realize boosted performances and thus, encouraging the scientists of two completely different fields to explore POMs as imperious contenders to design next‐generation nanodevices. Finally, challenges and promising prospects in this research field are also highlighted.

Keywords