Advances in Mechanical Engineering (May 2014)
Investigation of the Effects of Machining Parameters on Material Removal Rate in Abrasive Waterjet Turning
Abstract
The effects of the main operational machining parameters on the material removal rate (MRR) in abrasive waterjet turning (AWJT) are presented in this paper using a statistical approach. The five most common machining parameters such as water pressure, abrasive mass flow rate, cutting head traverse speed, workpiece rotational speed, and depth of cut have been put into a five-level central composite rotatable experimental design (CCRD). The main effects of parameters and the interaction among them were analyzed by means of the analysis of variance (ANOVA) and the response surfaces for MRR were obtained fitting a second-order polynomial function. It has been found that depth of cut and cutting head traverse speed are the most influential parameters, whereas the rotational speed is insignificant. In addition, the investigations show that interactions between traverse speed and pressure, abrasive mass flow rate and depth of cut, and pressure and depth of cut are significant on MRR. This result advances the AWJT state of the art. A complete model discussion has been reported drawing interesting considerations on the AWJT process characterising phenomena, where parameters interactions play a fundamental role.