Jurnal Teknologi Informasi dan Ilmu Komputer (Aug 2020)

Analisis Kinerja Algoritma Mesin Pembelajaran untuk Klarifikasi Penyakit Stroke Menggunakan Citra CT Scan

  • Nur Sakinah,
  • Tessy Badriyah,
  • Iwan Syarif

DOI
https://doi.org/10.25126/jtiik.2020743482
Journal volume & issue
Vol. 7, no. 4
pp. 833 – 844

Abstract

Read online

Stroke adalah suatu kondisi dimana pasokan darah ke otak terganggu sehingga bagian tubuh yang dikendalikan oleh area otak yang rusak tidak dapat berfungsi dengan baik. Penyebab stroke antara lain adalah terjadinya penyumbatan pada pembuluh darah (stroke iskemik) atau pecahnya pembuluh darah (stroke hemoragik). Pasien yang terkena stroke harus segera ditangani secepatnya karena sel otak dapat mati dalam hitungan menit. Tindakan penanganan stroke secara cepat dan tepat dapat mengurangi resiko kerusakan otak dan mencegah terjadinya komplikasi. Penelitian ini bertujuan untuk mengembangkan perangkat lunak yang dapat membaca dan menganalisis citra CT scan dari otak, dan kemudian secara otomatis memprediksi apakah citra CT scan tersebut stroke iskemik atau stroke hemoragik. Data citra CT scan berasal dari Rumah Sakit Umum Haji Surabaya yang diambil selama periode Januari-Mei 2019 dan berasal dari 102 pasien yang terindikasi stroke. Sebelum data gambar tersebut diolah dengan menggunakan beberapa algoritma mesin pembelajaran, data tersebut melalui tahap pre-processing yang bertujuan untuk meningkatkan kualitas citra meliputi konversi citra, pemotongan citra, penskalaan, greyscaling, penghilangan noise dan augmentasi. Tahap selanjutnya adalah ekstraksi fitur menggunakan metode Gray-Level Co-Occurrence Matrix (GLCM). Penelitian ini juga bertujuan untuk membandingkan kinerja lima algoritma mesin pembelajaran yaitu Naïve Bayes, Logistic Regression, Neural Network, Support Vector Machine dan Deep Learning yang diterapkan untuk memprediksi penyakit stroke. Hasil percobaan menunjukkan bahwa algoritma Deep Learning menghasilkan tingkat performansi paling tinggi yaitu nilai akurasi 96.78%, presisi 97.59% dan recall 95.92%. Abstract Stroke is a condition in which the blood supply to the brain is interrupted so that parts of the body that are controlled by damaged brain areas cannot function properly. Causes of strokes include blockages in blood vessels (ischemic stroke) or rupture of blood vessels (hemorrhagic stroke). Stroke patients must be treated as soon as possible because brain cells can die within minutes. The handling of stroke patients quickly can reduce the risk of brain damage and prevent complications. This study aims to develop software that can read and analyze CT scan images from the brain, and then automatically predict whether the CT scan images are ischemic stroke or hemorrhagic stroke. The CT scan image data came from the Surabaya Hajj General Hospital which was taken during the January-May 2019 period and came from 102 patients who had indicated a stroke. Before the image data is processed using several machine learning algorithms, the data goes through a pre-processing phase which aims to improve image quality including image conversion, image cutting, scaling, greyscaling, noise removal and augmentation. The next step is feature extraction using the Gray-Level Co-Occurrence Matrix (GLCM) method. This study also aims to compare the performance of five machine learning algorithms, namely Naïve Bayes, Logistic Regression, Neural Networks, Support Vector Machines and Deep Learning which are applied to predict stroke. The experimental results show that the deep learning algorithm produces the highest level of performance where the accuracy value is 96.78%, 97.59% precision and 95.92% recall.