Experimental Gerontology (Jan 2023)

Mesencephalic astrocyte-derived neurotrophic factor (MANF) prevents the neuroinflammation induced dopaminergic neurodegeneration

  • Jing-Xing Zhang,
  • Kai-Ge Zhou,
  • Yan-Xin Yin,
  • Ling-Jing Jin,
  • Wei-Fang Tong,
  • Jia Guo,
  • Li-Hua Yu,
  • Xian-Cheng Ye,
  • Ming Jiang

Journal volume & issue
Vol. 171
p. 112037

Abstract

Read online

Background: The excessive activation of the microglia leads to the release of inflammatory factors that contribute to neuronal cell loss and neurodegeneration in Parkinson's Disease (PD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) that belongs to a newly found neurotrophic factors (NTFs) family has been reported to promote neuronal survival in the PD models. However, the effects of the MANF on neuroinflammation in PD remain unclear. Methods: AAV8-MANF virus was constructed to determine whether the high expression of MANF can protect the neuroinflammation-induced dopaminergic neurodegeneration in rats with 6-OHDA-induced PD. Rotarod performance test, immunofluorescent staining and western bolt were employed to evaluate the behavioral dysfunction, dopaminergic neurodegeneration, microglia activation, and signal activation. 6-OHDA treated SH-SY5Y cells and LPS treated BV-2 cells were used as the in vitro model for MANF neuroprotective and neuroinflammation mechanisms. Cell vitality and apoptosis were evaluated with MTT, CCK-8 and flow cytometric analysis. The AKT/GSK3β-Nrf2 signaling and the TNF-α/IL6 expression were measured by Western Blot. Results: Our findings indicated that the elevated MANF expression by the AAV8-MANF administration ameliorated the motor dysfunction and protected the dopaminergic neurons in the 6-OHDA treated rats. The upregulated CD11b in the rat SN caused by the 6-OHDA administration was significantly attenuated by the pretreatment of the AAV8-MANF. Furthermore, the levels of p-AKT, p-GSK3β, BCL-2, and Nrf-2 were upregulated by the high expression of the MANF. Under the oxidative stress of the 6-OHDA, the MANF significantly reduced the apoptotic effect of the TNF-α on the SH-SY5Y cells. In the LPS treated BV-2 cells, the MANF reduced the production of the TNF-α and IL-6, via enhancing the Nrf-2, p-Akt, p-GSK3β, and p-NF-κβ level. Conclusions: These results suggested that the MANF prevented the dopaminergic neurodegeneration caused by the microglia activation in PD via activation of the AKT/GSK3β-Nrf-2 signaling axis.

Keywords