Scientific Reports (Jun 2023)

Mechanical properties of additively manufactured zirconia with alumina air abrasion surface treatment

  • Lee-Gang Yoo,
  • Nan-Sim Pang,
  • So-Hyun Kim,
  • Bock-Young Jung

DOI
https://doi.org/10.1038/s41598-023-36181-6
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 9

Abstract

Read online

Abstract This study aimed to evaluate the mechanical properties of zirconia fabricated using additive manufacturing technology and compare them to those of zirconia fabricated using subtractive manufacturing technology. Sixty disc-shaped specimens were fabricated for the additive (n = 30) and subtractive manufacturing groups (n = 30), and each group was divided into two subgroups according to their air-abrasion surface treatment: control (n = 15) and air-abrasion groups (n = 15). Mechanical properties including the flexural strength (FS), Vickers hardness, and surface roughness were determined, and the values were analyzed by one-way ANOVA and Tukey’s post hoc test (α = 0.05). X-ray diffraction and scanning electron microscopy were used for phase analysis and surface topography evaluation, respectively. The SMA group exhibited the highest FS (1144.97 ± 168.1 MPa), followed by the SMC (944.58 ± 141.38 MPa), AMA (905.02 ± 111.38 MPa), and AMC groups (763.55 ± 68.69 MPa). The Weibull distribution showed the highest scale value (1213.55 MPa) in the SMA group, with the highest shape value in the AMA group (11.69). A monoclinic peak was not detected in both the AMC and SMC groups, but after air abrasion, the monoclinic phase content ( $${\mathrm{X}}_{\mathrm{m}}$$ X m ) reached 9% in the AMA group, exceeding that in the SMA group (7%). The AM groups exhibited statistically lower FS values than those of the SM groups under the same surface treatment (p < 0.05). Air-abrasion surface treatment increased the monoclinic phase content and FS (p < 0.05) in both the additive and subtractive groups, while it increased the surface roughness (p < 0.05) only in the additive group and did not affect the Vickers hardness in either group. For zirconia manufactured using additive technology, the mechanical properties are comparable to those of zirconia manufactured using subtractive technology.