International Transactions on Electrical Energy Systems (Jan 2023)
An Adaptive Robust Optimization Model for Microgrids Operation Using Convexified AC Power Flow Equations
Abstract
Considering the increasing penetration of renewable energy sources (RESs) into power grids, adopting efficient energy management strategies is vital to mitigate the uncertainty issues resulting from the intermittent nature of their output power. This paper aims to resolve the energy management problem by presenting an adaptive robust optimization (ARO) model in which uncertainties associated with solar and wind powers, consumer demand, and electricity prices are considered. The proposed model comprises three stages, one master and two subproblems, using both linearized and convexified power flow equations. Meanwhile, a new optimization-based bound tightening (OBBT) method is also presented to strengthen the relaxation. The proposed solution method solves the microgrid (MG) operation management problem with high accuracy due to considering the convexification method in a reasonable computational time and reducing operational costs compared to conventional models. The numerical results indicate the benefits of the proposed ARO and solution approach over traditional methods.