Critical Care (Dec 2021)
Predictors for extubation failure in COVID-19 patients using a machine learning approach
- Lucas M. Fleuren,
- Tariq A. Dam,
- Michele Tonutti,
- Daan P. de Bruin,
- Robbert C. A. Lalisang,
- Diederik Gommers,
- Olaf L. Cremer,
- Rob J. Bosman,
- Sander Rigter,
- Evert-Jan Wils,
- Tim Frenzel,
- Dave A. Dongelmans,
- Remko de Jong,
- Marco Peters,
- Marlijn J. A. Kamps,
- Dharmanand Ramnarain,
- Ralph Nowitzky,
- Fleur G. C. A. Nooteboom,
- Wouter de Ruijter,
- Louise C. Urlings-Strop,
- Ellen G. M. Smit,
- D. Jannet Mehagnoul-Schipper,
- Tom Dormans,
- Cornelis P. C. de Jager,
- Stefaan H. A. Hendriks,
- Sefanja Achterberg,
- Evelien Oostdijk,
- Auke C. Reidinga,
- Barbara Festen-Spanjer,
- Gert B. Brunnekreef,
- Alexander D. Cornet,
- Walter van den Tempel,
- Age D. Boelens,
- Peter Koetsier,
- Judith Lens,
- Harald J. Faber,
- A. Karakus,
- Robert Entjes,
- Paul de Jong,
- Thijs C. D. Rettig,
- Sesmu Arbous,
- Sebastiaan J. J. Vonk,
- Mattia Fornasa,
- Tomas Machado,
- Taco Houwert,
- Hidde Hovenkamp,
- Roberto Noorduijn Londono,
- Davide Quintarelli,
- Martijn G. Scholtemeijer,
- Aletta A. de Beer,
- Giovanni Cinà,
- Adam Kantorik,
- Tom de Ruijter,
- Willem E. Herter,
- Martijn Beudel,
- Armand R. J. Girbes,
- Mark Hoogendoorn,
- Patrick J. Thoral,
- Paul W. G. Elbers,
- the Dutch ICU Data Sharing Against Covid-19 Collaborators
Affiliations
- Lucas M. Fleuren
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit
- Tariq A. Dam
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit
- Michele Tonutti
- Daan P. de Bruin
- Robbert C. A. Lalisang
- Diederik Gommers
- Department of Intensive Care, Erasmus Medical Center
- Olaf L. Cremer
- Department of Intensive Care, UMC Utrecht
- Rob J. Bosman
- ICU, OLVG
- Sander Rigter
- Department of Anesthesiology and Intensive Care, St. Antonius Hospital
- Evert-Jan Wils
- Department of Intensive Care, Franciscus Gasthuis and Vlietland
- Tim Frenzel
- Department of Intensive Care Medicine, Radboud University Medical Center
- Dave A. Dongelmans
- Department of Intensive Care Medicine, Amsterdam UMC
- Remko de Jong
- Intensive Care, Bovenij Ziekenhuis
- Marco Peters
- Intensive Care, Canisius Wilhelmina Ziekenhuis
- Marlijn J. A. Kamps
- Intensive Care, Catharina Ziekenhuis Eindhoven
- Dharmanand Ramnarain
- Department of Intensive Care, ETZ Tilburg
- Ralph Nowitzky
- Intensive Care, HagaZiekenhuis
- Fleur G. C. A. Nooteboom
- Intensive Care, Laurentius Ziekenhuis
- Wouter de Ruijter
- Department of Intensive Care Medicine, Northwest Clinics
- Louise C. Urlings-Strop
- Intensive Care, Reinier de Graaf Gasthuis
- Ellen G. M. Smit
- Intensive Care, Spaarne Gasthuis
- D. Jannet Mehagnoul-Schipper
- Intensive Care, VieCuri Medisch Centrum
- Tom Dormans
- Intensive Care, Zuyderland MC
- Cornelis P. C. de Jager
- Department of Intensive Care, Jeroen Bosch Ziekenhuis
- Stefaan H. A. Hendriks
- Intensive Care, Albert Schweitzerziekenhuis
- Sefanja Achterberg
- ICU, Haaglanden Medisch Centrum
- Evelien Oostdijk
- ICU, Maasstad Ziekenhuis Rotterdam
- Auke C. Reidinga
- ICU, SEH, BWC, Martiniziekenhuis
- Barbara Festen-Spanjer
- Intensive Care, Ziekenhuis Gelderse Vallei
- Gert B. Brunnekreef
- Department of Intensive Care, Ziekenhuisgroep Twente
- Alexander D. Cornet
- Department of Intensive Care, Medisch Spectrum Twente
- Walter van den Tempel
- Department of Intensive Care, Ikazia Ziekenhuis Rotterdam
- Age D. Boelens
- Antonius Ziekenhuis Sneek
- Peter Koetsier
- Intensive Care, Medisch Centrum Leeuwarden
- Judith Lens
- ICU, IJsselland Ziekenhuis
- Harald J. Faber
- ICU, WZA
- A. Karakus
- Department of Intensive Care, Diakonessenhuis Hospital
- Robert Entjes
- Department of Intensive Care
- Paul de Jong
- Department of Anesthesia and Intensive Care, Slingeland Ziekenhuis
- Thijs C. D. Rettig
- Department of Anesthesiology, Intensive Care and Pain Medicine, Amphia Ziekenhuis
- Sesmu Arbous
- Department of Intensive Care, LUMC
- Sebastiaan J. J. Vonk
- Mattia Fornasa
- Tomas Machado
- Taco Houwert
- Hidde Hovenkamp
- Roberto Noorduijn Londono
- Davide Quintarelli
- Martijn G. Scholtemeijer
- Aletta A. de Beer
- Giovanni Cinà
- Adam Kantorik
- Tom de Ruijter
- BigData Republic
- Willem E. Herter
- Martijn Beudel
- Department of Neurology, Amsterdam UMC, Universiteit Van Amsterdam
- Armand R. J. Girbes
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit
- Mark Hoogendoorn
- Quantitative Data Analytics Group, Department of Computer Science, Faculty of Science, Vrije Universiteit
- Patrick J. Thoral
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit
- Paul W. G. Elbers
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit
- the Dutch ICU Data Sharing Against Covid-19 Collaborators
- DOI
- https://doi.org/10.1186/s13054-021-03864-3
- Journal volume & issue
-
Vol. 25,
no. 1
pp. 1 – 10
Abstract
Abstract Introduction Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19. Methods We used highly granular data from 3464 adult critically ill COVID patients in the multicenter Dutch Data Warehouse, including demographics, clinical observations, medications, fluid balance, laboratory values, vital signs, and data from life support devices. All intubated patients with at least one extubation attempt were eligible for analysis. Transferred patients, patients admitted for less than 24 h, and patients still admitted at the time of data extraction were excluded. Potential predictors were selected by a team of intensive care physicians. The primary and secondary outcomes were extubation without reintubation or death within the next 7 days and within 48 h, respectively. We trained and validated multiple machine learning algorithms using fivefold nested cross-validation. Predictor importance was estimated using Shapley additive explanations, while cutoff values for the relative probability of failed extubation were estimated through partial dependence plots. Results A total of 883 patients were included in the model derivation. The reintubation rate was 13.4% within 48 h and 18.9% at day 7, with a mortality rate of 0.6% and 1.0% respectively. The grandient-boost model performed best (area under the curve of 0.70) and was used to calculate predictor importance. Ventilatory characteristics and settings were the most important predictors. More specifically, a controlled mode duration longer than 4 days, a last fraction of inspired oxygen higher than 35%, a mean tidal volume per kg ideal body weight above 8 ml/kg in the day before extubation, and a shorter duration in assisted mode (< 2 days) compared to their median values. Additionally, a higher C-reactive protein and leukocyte count, a lower thrombocyte count, a lower Glasgow coma scale and a lower body mass index compared to their medians were associated with extubation failure. Conclusion The most important predictors for extubation failure in critically ill COVID-19 patients include ventilatory settings, inflammatory parameters, neurological status, and body mass index. These predictors should therefore be routinely captured in electronic health records.
Keywords