Discrete Dynamics in Nature and Society (Jan 2012)

Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras

  • Madjid Eshaghi Gordji,
  • Badrkhan Alizadeh,
  • Young Whan Lee,
  • Gwang Hui Kim

DOI
https://doi.org/10.1155/2012/961642
Journal volume & issue
Vol. 2012

Abstract

Read online

Let n>1 be an integer, let A be an algebra, and X be an A-module. A quadratic function D:A→X is called a quadratic n-derivation if D(∏i=1nai)=D(a1)a22⋯an2+a12D(a2)a32⋯an2+⋯+a12a22⋯an−12D(an) for all a1,...,an∈A. We investigate the Hyers-Ulam stability of quadratic n-derivations from non-Archimedean Banach algebras into non-Archimedean Banach modules by using the Banach fixed point theorem.