IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2015)

A New Model for Surface Soil Moisture Retrieval From CBERS-02B Satellite Imagery

  • Guoqing Zhou,
  • Xiaodong Tao,
  • Yue Sun,
  • Rongting Zhang,
  • Tao Yue,
  • Bo Yang

DOI
https://doi.org/10.1109/JSTARS.2014.2364635
Journal volume & issue
Vol. 8, no. 2
pp. 628 – 637

Abstract

Read online

This paper develops a new model for surface soil moisture (SSM) retrieval from CBERS-02B images. The paper first analyzes the existing SSM retrieval model from Landsat TM imagery and establishes the spectral radiance relationship of each band between Landsat TM and CBERS-02B. The model associated parameters including mean reflectance, mean atmospheric transmittance, and mean sun radial brightness of each band between Landsat TM and CBERS-02B is established. The model is finally adjusted by considering the differences of response frequency and sensitivity in the two satellite sensors. Two test areas, Jili Village of Laibin county, Guangxi Province, China and Yuanjiaduan Village of Jiujiang County, JiangXi Province, China are chosen to verify the correctness of the developed model. The SSMs retrieved from Landsat TM imagery are chosen as references. The accuracy of the proposed model is evaluated through correlation coefficient and root-mean-square error (RMSE) relative to the SSMs retrieved from Landsat TM images. The verified results discover that the relative accuracy of the average SSMs retrieved by the proposed model from CBERS-02B can reach over 91.0% when compared to the SSMs retrieved from Lansat TM. In addition, six types of lands are used to further evaluate the accuracy of the proposed model. The experimental results in two areas show that the correlation coefficient and the RMSE between two SSMs from CBERS-02B and Landsat TM achieves over 0.9 and 0.011 (m3/m3), respectively, in both rocky desertification land and dry land; achieve over 0.81 and 0.09 (m3/m3), respectively, in rice field, shrub land, and woodland. These results demonstrate that the model developed in this paper can effectively calculate the SSMs for CBERS-02B satellite imagery.

Keywords