Oceans (Jun 2022)

3D Structure of the Ras Al Hadd Oceanic Dipole

  • Yassine Bennani,
  • Adam Ayouche,
  • Xavier Carton

DOI
https://doi.org/10.3390/oceans3030019
Journal volume & issue
Vol. 3, no. 3
pp. 268 – 288

Abstract

Read online

In the Arabian Sea, southeast of the Arabian peninsula, an oceanic dipole, named the Ras Al Hadd (RAH) dipole, is formed each year, lying near the Ras Al Hadd cape. The RAH dipole is the association of a cyclonic eddy (CE) to the northeast, with an anticyclonic eddy (AE) to the southwest. This dipole intensifies in the summer monsoon and disappears during the winter monsoon. This dipole has been described previously, but mostly for its surface expression, and for short time intervals. Here, we describe the 3D structure of this dipole over the 2000–2015 period, by combining colocalized ARGO float profiler data (a total of 7552 profiles inside and outside the RAH dipole) with angular momentum eddy detection and tracking algorithm (AMEDA) surface data. We show first the different water masses in and near the RAH dipole. The presence of the Persian Gulf water (PGW) below 200 m depth is confirmed in both eddies. Arabian Sea high salinity water (ASHSW) is found exclusively in the AE; a layer of fresh and cold water is observed above 100 m depth in both eddies. By analyzing the potential density structures, we show that the CE has a surface-intensified structure while the AE is subsurface-intensified. The sea level anomaly shows a 0.04 m elevation above the AE and a 0.2 m depression over the CE. The CE has a faster geostrophic velocity, (vertical velocity, respectively) 0.6 m s−1 than the AE, 0.15 m s−1 (respectively, 3 m day−1 for the CE and 0.6 m day−1 for the AE). After presenting the vertical structure of the dipole, we show the dominance of the nonlinear Ekman pumping in the CE over the linear pumping affecting the dipole. As a consequence, we explain the CE’s longer lifetime by its intensity and shallowness, and by its sensitivity to the interaction with the atmosphere (in particular the wind stress) and with neighboring eddies. We examined the possible (co)existence of symmetric, barotropic, and baroclinic instabilities in both eddies. These instabilities coexist near the surface in both eddies. They are intensified for the CE, which suggests that the CE is unstable and the AE is rather stable or may need a long time to be unstable.

Keywords