NeuroImage: Clinical (Jan 2020)
The bed nucleus of the stria terminalis and functionally linked neurocircuitry modulate emotion processing and HPA axis dysfunction in posttraumatic stress disorder
Abstract
Background: The bed nucleus of the stria terminalis (BNST) plays an important role in rodent posttraumatic stress disorder (PTSD), but evidence to support its relevance to human PTSD is limited. We sought to understand the role of the BNST in human PTSD via fMRI, behavioral, and physiological measurements. Methods: 29 patients with PTSD (childhood sexual abuse) and 23 healthy controls (HC) underwent BOLD imaging with an emotional word paradigm. Symptom severity was assessed using the Clinician-Administered PTSD Scale and HPA-axis dysfunction was assessed by measuring the diurnal cortisol amplitude index (DCAI). A data-driven multivariate analysis was used to determine BNST task-based functional co-occurrence (tbFC) across individuals. Results: In the trauma-versus-neutral word contrast, patients showed increased activation compared to HC in the BNST, medial prefrontal cortex (mPFC), posterior cingulate gyrus (PCG), caudate heads, and midbrain, and decreased activation in dorsolateral prefrontal cortex (DLPFC). Symptom severity positively correlated with activity in the BNST, caudate head, amygdala, hippocampus, dorsal anterior cingulate gyrus (dACG), and PCG, and negatively with activity in the medial orbiotofrontal cortex (mOFC) and DLPFC. Patients and HC showed marked differences in the relationship between the DCAI and BOLD activity in the BNST, septal nuclei, dACG, and PCG. Patients showed stronger tbFC between the BNST and closely linked limbic and subcortical regions, and a loss of negative tbFC between the BNST and DLPFC. Conclusions: Based upon novel data, we present a new model of dysexecutive emotion processing and HPA-axis dysfunction in human PTSD that incorporates the role of the BNST and functionally linked neurocircuitry.