Neoplasia: An International Journal for Oncology Research (Sep 2024)

Image-based deep learning model using DNA methylation data predicts the origin of cancer of unknown primary

  • Jinha Hwang,
  • Yeajina Lee,
  • Seong-Keun Yoo,
  • Jong-Il Kim

Journal volume & issue
Vol. 55
p. 101021

Abstract

Read online

Cancer of unknown primary (CUP) is a rare type of metastatic cancer in which the origin of the tumor is unknown. Since the treatment strategy for patients with metastatic tumors depends on knowing the primary site, accurate identification of the origin site is important. Here, we developed an image-based deep-learning model that utilizes a vision transformer algorithm for predicting the origin of CUP. Using DNA methylation dataset of 8,233 primary tumors from The Cancer Genome Atlas (TCGA), we categorized 29 cancer types into 18 organ classes and extracted 2,312 differentially methylated CpG sites (DMCs) from non-squamous cancer group and 420 DMCs from squamous cell cancer group. Using these DMCs, we created organ-specific DNA methylation images and used them for model training and testing. Model performance was evaluated using 394 metastatic cancer samples from TCGA (TCGA-meta) and 995 samples (693 primary and 302 metastatic cancers) obtained from 20 independent external studies. We identified that the DNA methylation image reveals a distinct pattern based on the origin of cancer. Our model achieved an overall accuracy of 96.95 % in the TCGA-meta dataset. In the external validation datasets, our classifier achieved overall accuracies of 96.39 % and 94.37 % in primary and metastatic tumors, respectively. Especially, the overall accuracies for both primary and metastatic samples of non-squamous cell cancer were exceptionally high, with 96.79 % and 96.85 %, respectively.

Keywords