Complexity (Jan 2022)

New Stabilization Properties of Pendulum Models Applying a Large Parameter

  • A. I. Ismail,
  • Hamza A. Ghulman

DOI
https://doi.org/10.1155/2022/2704012
Journal volume & issue
Vol. 2022

Abstract

Read online

In the present paper, we introduce new models of pendulum motions for two cases: the first model consists of a pendulum with mass M moving at the end of a string with a suspended point moving on an ellipse and the second one consists of a pendulum with mass M moving at the end of a spring with a suspended point on an ellipse. In both models, we use the Lagrangian functions for deriving the equations of motions. The derived equations are reduced to a quasilinear system of the second order. We use a new mathematical technique named a large parameter method for solving both models’ systems. The analytical solutions are obtained in terms of the generalized coordinates. We use the numerical techniques represented by the fourth-order Runge–Kutta method to solve the autonomous system for both cases. The stabilities of the obtained solutions are studied using the phase diagram procedure. The obtained numerical solutions and analytical ones are compared to examine the accuracy of the mathematical and numerical techniques. The large parameter technique gives us the advantage to obtain the solutions at infinity in opposite with the famous Poincare’s (small parameters) method which was used by many outstanding scientists in the last two centuries.