BMC Microbiology (Dec 2008)

Phenotypic and molecular characterisation of <it>Brucella </it>isolates from marine mammals

  • Bashiruddin John B,
  • Whatmore Adrian M,
  • King Amanda C,
  • Perrett Lorraine L,
  • Stubberfield Emma J,
  • Dawson Claire E,
  • Stack Judy A,
  • MacMillan Alastair P

DOI
https://doi.org/10.1186/1471-2180-8-224
Journal volume & issue
Vol. 8, no. 1
p. 224

Abstract

Read online

Abstract Background Bacteria of the genus Brucella are the causative organisms of brucellosis in animals and man. Previous characterisation of Brucella strains originating from marine mammals showed them to be distinct from the terrestrial species and likely to comprise one or more new taxa. Recently two new species comprising Brucella isolates from marine mammals, B. pinnipedialis and B. ceti, were validly published. Here we report on an extensive study of the molecular and phenotypic characteristics of marine mammal Brucella isolates and on how these characteristics relate to the newly described species. Results In this study, 102 isolates of Brucella originating from eleven species of marine mammals were characterised. Results obtained by analysis using the Infrequent Restriction Site (IRS)-Derivative PCR, PCR-RFLP of outer membrane protein genes (omp) and IS711 fingerprint profiles showed good consistency with isolates originating from cetaceans, corresponding to B. ceti, falling into two clusters. These correspond to isolates with either dolphins or porpoises as their preferred host. Isolates originating predominantly from seals, and corresponding to B. pinnipedialis, cluster separately on the basis of IS711 fingerprinting and other molecular approaches and can be further subdivided, with isolates from hooded seals comprising a distinct group. There was little correlation between phenotypic characteristics used in classical Brucella biotyping and these groups. Conclusion Molecular approaches are clearly valuable in the division of marine mammal Brucella into subtypes that correlate with apparent ecological divisions, whereas conventional bioyping is of less value. The data presented here confirm that there are significant subtypes within the newly described marine mammal Brucella species and add to a body of evidence that could lead to the recognition of additional species or sub-species within this group.