Earth, Planets and Space (Oct 2021)
The sensitivity of ocean tide loading displacements to the structure of the upper mantle and crust of Taiwan Island
Abstract
Abstract Ocean tide loading (OTL) displacements are sensitive to the shallow structure of the solid Earth; hence, the high-resolution spatial pattern of OTL displacement can provide knowledge to constrain the shallow Earth structure, especially in coastal areas. In this study, we investigate the sensitivity of the modeled M2 OTL displacement over Taiwan Island to perturbations of three physical quantities, namely, the density, bulk modulus, and shear modulus in the upper mantle and crust. Then, we compare the sensitivity of the modeled M2 OTL displacement to Earth models with the sensitivity to ocean tide models using root mean square (RMS) differences. We compute the displacement Green’s function and OTL displacement relative to the center of mass of the solid Earth (CE) reference frame, analyze the sensitivity to the three physical quantities in the CRUST1.0 model and the Preliminary Reference Earth Model (PREM), and present their spatial patterns. We find that displacement Green’s functions and OTL displacements are more sensitive to the two elastic moduli than the density in the upper mantle and crust. Moreover, their distinctive sensitivity patterns suggest that the three physical quantities might be constrained independently. The specific relationships between the perturbed structural depths and the distance ranges of peak sensitivities from the observation points to the coastline revealed by the shear modulus can mitigate the nonuniqueness problem in inversion. In particular, the horizontal tidal components observed by the Global Positioning System (GPS) can yield better results in inversions than the vertical component owing to the smaller OTL model errors and the higher structural sensitivity (except for the shear modulus in the asthenosphere).
Keywords