Journal of Advanced Research (Dec 2024)

Early concentrate starter introduction induces rumen epithelial parakeratosis by blocking keratinocyte differentiation with excessive ruminal butyrate accumulation

  • Kai Zhang,
  • Yali Zhang,
  • Jing Qin,
  • Haining Zhu,
  • Ning Liu,
  • Daming Sun,
  • Yuyang Yin,
  • Shengyong Mao,
  • Weiyun Zhu,
  • Zan Huang,
  • Junhua Liu

Journal volume & issue
Vol. 66
pp. 71 – 86

Abstract

Read online

Introduction: Rumen epithelial parakeratosis, a common disease in ruminants caused by abnormalities in the ruminal stratified squamous epithelial keratinization process, negatively impacts ruminant health and performance. However, we still lack a comprehensive perception of the underlying mechanisms and the predisposing factors for this disorder. Objectives: Here, we investigated rumen epithelial cell heterogeneity, differentiation trajectories, and cornification to clarify the rumen epithelial keratinization process and discern the key ruminal metabolites contributing to rumen epithelial parakeratosis. Methods: Twenty-four 14-day-old lambs were divided into three groups, including only milk feeding, milk plus alfalfa hay feeding, and milk plus corn-soybean concentrate starter feeding. At 42 days of age, the lambs were slaughtered, and rumen tissues were collected for single-cell RNA-sequencing (scRNA-seq), immunofluorescence, and quantitative real-time PCR (qRT-PCR) analyses. Ruminal fluid samples were collected for metabolomic analyses. Rumen epithelial organoid was used to verify the key ruminal metabolites contributing to parakeratosis. Results: As expected, we observed that concentrate starter introduction resulted in rumen epithelial parakeratosis. Moreover, scRNA-seq analysis revealed a developmental impediment in the transition from differentiated keratinocytes to terminally differentiated keratinocytes (TDK) in lambs with concentrate starter introduction. Immunofluorescence and qRT-PCR analyses further verified the location and expression of marker genes of TDK. Metabolomic analysis showed a robust positive correlation between ruminal butyrate levels and rumen epithelial keratinization. More importantly, we successfully established a rumen organoid model capable of facilitating the study of the keratinization process in the rumen epithelia and further confirmed that high dose butyrate indeed contributed to rumen epithelial parakeratosis. Conclusion: Collectively, concentrate starter introduction induces ruminal epithelial parakeratosis by blocking keratinocyte differentiation with excessive ruminal butyrate accumulation in a neonatal lamb model. These findings enhance our understanding of rumen epithelial keratinization and provide valuable insights for addressing rumen epithelial parakeratosis using early nutritional intervention strategies.

Keywords