The Scientific World Journal (Jan 2013)

Effects of MRP8, LPS, and Lenalidomide on the Expressions of TNF-α, Brain-Enriched, and Inflammation-Related MicroRNAs in the Primary Astrocyte Culture

  • Ahmed Omran,
  • Muhammad Usman Ashhab,
  • Na Gan,
  • Huimin Kong,
  • Jing Peng,
  • Fei Yin

DOI
https://doi.org/10.1155/2013/208309
Journal volume & issue
Vol. 2013

Abstract

Read online

Astrocytes are now recognized as a heterogeneous class of cells with many important and diverse functions in healthy and diseased central nervous system (CNS). MicroRNAs (miRNAs) are small, noncoding RNAs which may have key roles in astrocytes activation in response to various stimuli. We performed quantitative real-time PCR (qPCR) to detect changes in the expressions of brain-enriched miRNAs (124, 134, 9, 132, and 138), inflammation-related miRNAs (146a, 21, 181a, 221, and 222), and tumor necrosis factor alpha (TNF-α) in the rat primary astrocyte cultures after stimulation with myeloid-related protein 8 (MRP8) and lipopolysaccharides (LPS). Further, we inhibited the expression of TNF-α in the astrocytes by using TNF-α inhibitor (lenalidomide) and tested for the first time the effect of this inhibition on the expressions of the same tested miRNAs. Stimulation of the astrocytes with MRP8 or LPS leads to significant upregulation of miRNAs (124, 134, 9, 132, 146a, 21, 181a, 221, and 222), while miRNA-138 was downregulated. TNF-α inhibition with lenalidomide leads to opposite expressions of the tested miRNAs. These miRNAs may play an important role in activation of the astrocytes and may be a novel target for cell-specific therapeutic interventions in multiple CNS diseases.