Earth (Dec 2022)

Merging Satellite Products and Rain-Gauge Observations to Improve Hydrological Simulation: A Review

  • Haile Belay,
  • Assefa M. Melesse,
  • Getachew Tegegne

DOI
https://doi.org/10.3390/earth3040072
Journal volume & issue
Vol. 3, no. 4
pp. 1275 – 1289

Abstract

Read online

Improving the quality of atmospheric precipitation measurements is crucial in the view of minimizing the uncertainty in weather forecasting, climate change impact assessment, water resource assessment and management, and drought and flood prediction. Remote sensing technology has considerably improved the spatio-temporal assessment of precipitation. Despite the advancement in the remote sensing technology, there is a need to investigate the robust approach towards integrating ground-based-measured and satellite-product precipitation to better understand the hydrologic process of any basin. Several data-merging methods have been proposed; however, the application of merged precipitation products for hydrological simulation has rarely been investigated. Thus, in this review, technical characteristics including basic assumptions, along with their procedures, are discussed. Moreover, the limitations of eight commonly used merging approaches, (1) Multiple Linear Regression, (2) Residual Inverse Distance Weighting, (3) Linearized Weighting, (4) Inverse Root-Mean-Square Error Weighting, (5) Optimal Interpolation, (6) Random-Forest-Based Merging Procedure, (7) Bayesian Model Averaging, and (8) the Kriging Method, and their advances with respect to hydrological simulation are discussed. Finally, future research directions towards improving data merging approaches are recommended.

Keywords