Mathematics (Feb 2022)

Quantum-Inspired Interpretable AI-Empowered Decision Support System for Detection of Early-Stage Rheumatoid Arthritis in Primary Care Using Scarce Dataset

  • Samira Abbasgholizadeh Rahimi,
  • Mojtaba Kolahdoozi,
  • Arka Mitra,
  • Jose L. Salmeron,
  • Amir Mohammad Navali,
  • Alireza Sadeghpour,
  • Seyed Amir Mir Mohammadi

DOI
https://doi.org/10.3390/math10030496
Journal volume & issue
Vol. 10, no. 3
p. 496

Abstract

Read online

Rheumatoid arthritis (RA) is a chronic inflammatory and long-term autoimmune disease that can lead to joint and bone erosion. This can lead to patients’ disability if not treated in a timely manner. Early detection of RA in settings such as primary care (as the first contact with patients) can have an important role on the timely treatment of the disease. We aim to develop a web-based Decision Support System (DSS) to provide a proper assistance for primary care providers in early detection of RA patients. Using Sparse Fuzzy Cognitive Maps, as well as quantum-learning algorithm, we developed an online web-based DSS to assist in early detection of RA patients, and subsequently classify the disease severity into six different levels. The development process was completed in collaborating with two specialists in orthopedic as well as rheumatology orthopedic surgery. We used a sample of anonymous patient data for development of our model which was collected from Shohada University Hospital, Tabriz, Iran. We compared the results of our model with other machine learning methods (e.g., linear discriminant analysis, Support Vector Machines, and K-Nearest Neighbors). In addition to outperforming other methods of machine learning in terms of accuracy when all of the clinical features are used (accuracy of 69.23%), our model identified the relation of the different features with each other and gave higher explainability comparing to the other methods. For future works, we suggest applying the proposed model in different contexts and comparing the results, as well as assessing its usefulness in clinical practice.

Keywords