JMIR Public Health and Surveillance (Oct 2024)

Spatiotemporal Cluster Detection for COVID-19 Outbreak Surveillance: Descriptive Analysis Study

  • Rachel Martonik,
  • Caitlin Oleson,
  • Ellyn Marder

DOI
https://doi.org/10.2196/49871
Journal volume & issue
Vol. 10
p. e49871

Abstract

Read online

BackgroundDuring the peak of the winter 2020-2021 surge, the number of weekly reported COVID-19 outbreaks in Washington State was 231; the majority occurred in high-priority settings such as workplaces, community settings, and schools. The Washington State Department of Health used automated address matching to identify clusters at health care facilities. No other systematic, statewide outbreak detection methods were in place. This was a gap given the high volume of cases, which delayed investigations and decreased data completeness, potentially leading to undetected outbreaks. We initiated statewide cluster detection using SaTScan, implementing a space-time permutation model to identify COVID-19 clusters for investigation. ObjectiveTo improve outbreak detection, the Washington State Department of Health initiated a systematic cluster detection model to identify timely and actionable COVID-19 clusters for local health jurisdiction (LHJ) investigation and resource prioritization. This report details the model’s implementation and the assessment of the tool’s effectiveness. MethodsIn total, 6 LHJs participated in a pilot to test model parameters including analysis type, geographic aggregation, cluster radius, and data lag. Parameters were determined through heuristic criteria to detect clusters early when they are smaller, making interventions more feasible. This study reviews all clusters detected after statewide implementation from July 17 to December 17, 2021. The clusters were analyzed by LHJ population and disease incidence. Clusters were compared with reported outbreaks. ResultsA weekly, LHJ-specific retrospective space-time permutation model identified 2874 new clusters during this period. While the weekly analysis included case data from the prior 3 weeks, 58.25% (n=1674) of all clusters identified were timely—having occurred within 1 week of the analysis and early enough for intervention to prevent further transmission. There were 2874 reported outbreaks during this same period. Of those, 363 (12.63%) matched to at least one SaTScan cluster. The most frequent settings among reported and matched outbreaks were schools and youth programs (n=825, 28.71% and n=108, 29.8%), workplaces (n=617, 21.46% and n=56, 15%), and long-term care facilities (n=541, 18.82% and n=99, 27.3%). Settings with the highest percentage of clusters that matched outbreaks were community settings (16/72, 22%) and congregate housing (44/212, 20.8%). The model identified approximately one-third (119/363, 32.8%) of matched outbreaks before cases were associated with the outbreak event in our surveillance system. ConclusionsOur goal was to routinely and systematically identify timely and actionable COVID-19 clusters statewide. Regardless of population or incidence, the model identified reasonably sized, timely clusters statewide, meeting the objective. Among some high-priority settings subject to public health interventions throughout the pandemic, such as schools and community settings, the model identified clusters that were matched to reported outbreaks. In workplaces, another high-priority setting, results suggest the model might be able to identify outbreaks sooner than existing outbreak detection methods.