PLoS Genetics (Mar 2022)

RNA editing increases the nucleotide diversity of SARS-CoV-2 in human host cells.

  • Xinxin Peng,
  • Yikai Luo,
  • Hongyue Li,
  • Xuejiao Guo,
  • Hu Chen,
  • Xuwo Ji,
  • Han Liang

DOI
https://doi.org/10.1371/journal.pgen.1010130
Journal volume & issue
Vol. 18, no. 3
p. e1010130

Abstract

Read online

SARS-CoV-2 is a positive-sense, single-stranded RNA virus responsible for the COVID-19 pandemic. It remains unclear whether and to what extent the virus in human host cells undergoes RNA editing, a major RNA modification mechanism. Here we perform a robust bioinformatic analysis of metatranscriptomic data from multiple bronchoalveolar lavage fluid samples of COVID-19 patients, revealing an appreciable number of A-to-I RNA editing candidate sites in SARS-CoV-2. We confirm the enrichment of A-to-I RNA editing signals at these candidate sites through evaluating four characteristics specific to RNA editing: the inferred RNA editing sites exhibit (i) stronger ADAR1 binding affinity predicted by a deep-learning model built from ADAR1 CLIP-seq data, (ii) decreased editing levels in ADAR1-inhibited human lung cells, (iii) local clustering patterns, and (iv) higher RNA secondary structure propensity. Our results have critical implications in understanding the evolution of SARS-CoV-2 as well as in COVID-19 research, such as phylogenetic analysis and vaccine development.