Algorithms (Jul 2024)
Crystal Symmetry-Inspired Algorithm for Optimal Design of Contemporary Mono Passivated Emitter and Rear Cell Solar Photovoltaic Modules
Abstract
A metaheuristic algorithm named the Crystal Structure Algorithm (CrSA), which is inspired by the symmetric arrangement of atoms, molecules, or ions in crystalline minerals, has been used for the accurate modeling of Mono Passivated Emitter and Rear Cell (PERC) WSMD-545 and CS7L-590 MS solar photovoltaic (PV) modules. The suggested algorithm is a concise and parameter-free approach that does not need the identification of any intrinsic parameter during the optimization stage. It is based on crystal structure generation by combining the basis and lattice point. The proposed algorithm is adopted to minimize the sum of the squares of the errors at the maximum power point, as well as the short circuit and open circuit points. Several runs are carried out to examine the V-I characteristics of the PV panels under consideration and the nature of the derived parameters. The parameters generated by the proposed technique offer the lowest error over several executions, indicating that it should be implemented in the present scenario. To validate the performance of the proposed approach, convergence curves of Mono PERC WSMD-545 and CS7L-590 MS PV modules obtained using the CrSA are compared with the convergence curves obtained using the recent optimization algorithms (OAs) in the literature. It has been observed that the proposed approach exhibited the fastest rate of convergence on each of the PV panels.
Keywords