PLoS Pathogens (Feb 2024)

Parasite-induced IFN-γ regulates host defense via CD115 and mTOR-dependent mechanism of tissue-resident macrophage death.

  • Andrew T Martin,
  • Shilpi Giri,
  • Alexandra Safronova,
  • Sophia I Eliseeva,
  • Samantha F Kwok,
  • Felix Yarovinsky

DOI
https://doi.org/10.1371/journal.ppat.1011502
Journal volume & issue
Vol. 20, no. 2
p. e1011502

Abstract

Read online

Host resistance to a common protozoan parasite Toxoplasma gondii relies on a coordinated immune response involving multiple cell types, including macrophages. Embryonically seeded tissue-resident macrophages (TRMs) play a critical role in maintaining tissue homeostasis, but their role in parasite clearance is poorly understood. In this study, we uncovered a crucial aspect of host defense against T. gondii mediated by TRMs. Through the use of neutralizing antibodies and conditional IFN-γ receptor-deficient mice, we demonstrated that IFN-γ directly mediated the elimination of TRMs. Mechanistically, IFN-γ stimulation in vivo rendered macrophages unresponsive to macrophage colony-stimulating factor (M-CSF) and inactivated mTOR signaling by causing the shedding of CD115 (CSFR1), the receptor for M-CSF. Further experiments revealed the essential role of macrophage IFN-γ responsiveness in host resistance to T. gondii. The elimination of peritoneal TRMs emerged as an additional host defense mechanism aimed at limiting the parasite's reservoir. The identified mechanism, involving IFN-γ-induced suppression of CD115-dependent mTOR signaling in macrophages, provides insights into the adaptation of macrophage subsets during infection and highlights a crucial aspect of host defense against intracellular pathogens.