Communications Physics (Aug 2024)

Control-enhanced non-Markovian quantum metrology

  • Xiaodong Yang,
  • Xinyue Long,
  • Ran Liu,
  • Kai Tang,
  • Yue Zhai,
  • Xinfang Nie,
  • Tao Xin,
  • Jun Li,
  • Dawei Lu

DOI
https://doi.org/10.1038/s42005-024-01758-8
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Quantum metrology promises unprecedented precision of parameter estimation, but it is often vulnerable to noise. While significant efforts have been devoted to improving the metrology performance in Markovian environments, practical control schemes specifically designed for non-Markovian noises are much less investigated. Here, we propose two control-enhanced quantum metrology schemes that are suitable for tackling general non-Markovian noises described by noise channels or noise spectra. We conduct experiments to verify the efficacy of these schemes on a nuclear magnetic resonance system. The experimental results involving multiqubit probes show that the parameter estimation precision can be greatly improved, significantly surpassing the standard quantum limit, with our schemes. At present, non-Markovian noises are widely encountered on diverse quantum devices, the proposed schemes are relevant for realistic metrology applications on these platforms.