Matrix Biology Plus (Feb 2024)
Characterization of an in vitro engineered ligament model
Abstract
In vivo tendon and ligament research can be limited by the difficultly of obtaining tissue samples that can be biochemically analyzed. In this study, we characterize the most widely used in vitro engineered ligament model. Despite previous works suggesting multiple passages change gene expression in 2D primary tenocytes, we found no relationship between passage number and expression of classical tendon fibroblast markers across different biological donors. When engineered into 3D ligaments, there was an increase in maximal tensile load between 7 and 14 days in culture, that corresponded with an increase in collagen content. By contrast, percent collagen increased logarithmically from Day 7 to Day 14, and this was similar to the increase in the modulus of the tissue. Importantly, there was no relationship between passage number and mechanical function or collagen content in the two independent donors tested. These results suggest that the model develops quickly and is reliable across differing passage numbers. This provides the field with the ability to 1) consistently determine functional changes of interventions out to passage number 10; and 2) to time interventions to the appropriate developmental stage: developing/regenerating (Day 7) or mature (Day 14) tissue.