Polymers (Jan 2022)

Iodine Immobilized UiO-66-NH<sub>2</sub> Metal-Organic Framework as an Effective Antibacterial Additive for Poly(ε-caprolactone)

  • Wei Chen,
  • Ping Zhu,
  • Yating Chen,
  • Yage Liu,
  • Liping Du,
  • Chunsheng Wu

DOI
https://doi.org/10.3390/polym14020283
Journal volume & issue
Vol. 14, no. 2
p. 283

Abstract

Read online

Iodine has been widely used as an effective disinfectant with broad-spectrum antimicrobial potency. However, the application of iodine in an antibacterial polymer remains challenging due to its volatile nature and poor solubility. Herein, iodine immobilized UiO-66-NH2 metal-organic framework (MOF) (UiO66@I2) with a high loading capacity was synthesized and used as an effective antibacterial additive for poly(ε-caprolactone) (PCL). An orthogonal design approach was used to achieve the optimal experiments’ conditions in iodine adsorption. UiO66@I2 nanoparticles were added to the PCL matrix under ultrasonic vibration and evaporated the solvent to get a polymer membrane. The composites were characterized by SEM, XRD, FTIR, and static contact angle analysis. UiO-66-NH2 nanoparticles have a high iodine loading capacity, up to 18 wt.%. The concentration of iodine is the most important factor in iodine adsorption. Adding 0.5 wt.% or 1.0 wt.% (equivalent iodine content) of UiO66@I2 to the PCL matrix had no influence on the structure of PCL but reduces the static water angle. The PCL composites showed strong antibacterial activities against Staphylococcus aureus and Escherichia coli. In contrast, the same content of free iodine/PCL composites had no antibacterial activity. The difference in the antibacterial performance was due to the different iodine contents in the polymer composites. It was found that MOF nanoparticles could retain most of the iodine during the sample preparation and storage, while there was few iodine left in the free iodine/PCL composites. This study offers a common and simple way to immobilize iodine and prepare antibacterial polymers with low antiseptic content that would reduce the influence of an additive on polymers’ physical properties.

Keywords