Translational Oncology (Jan 2025)
Res@ZIF-90 suppress gastric cancer progression by disturbing mitochondrial homeostasis
Abstract
Background: Gastric cancer (GC) is still a serious threat to human health worldwide. As a natural compound, resveratrol has been proven to have anti-tumor activity, and the nano-delivery carrier has shown its excellent ability to retain and control drug release. Methods: Res@ZIF-90 underwent synthesis via a one-pot method and subsequent characterization encompassing Dynamic Light Scattering, Scanning Electron Microscope, Transmission Electron Microscope, and UV–vis absorption spectroscope. The release of resveratrol from Res@ZIF-90 across varied pH environments were delineated employing High Performance Liquid Chromatography. The mitochondrial targeting of Res@ZIF-90 was scrutinized utilizing Fluorescent Inverted Microscopy. The cytotoxic impact of Res@ZIF-90 on HGC-27 cells was evaluated through CCK-8 assay, Live/Dead staining, scratch test, and JC-1 assay. Furthermore, the HGC-27 tumor-bearing mice model was established to explore the anti-tumor effect of Res@ZIF-90. Results: ZIF-90 can effectively release resveratrol under acidic (pH = 5.5) conditions. In addition, Res@ZIF-90 could be taken up by cells and localized into mitochondria. ZIF-90 has no obvious cytotoxicity at the experimental concentration, while Res@ZIF-90 was more cytotoxic to HGC-27 cells than free resveratrol at the same concentration. Res@ZIF-90 significantly reduced the expressions of PGCS 1α, TFAM, PINK1, and COX IV, which together induced mitochondrial homeostasis disorders and inhibited the tumor growth of HGC-27 tumor-bearing mice in vivo. Conclusions: Res@ZIF-90 can inhibit the progression of gastric cancer by targeting the mitochondria of gastric cancer cells and disrupting mitochondrial homeostasis to produce cytotoxic effects. Res@ZIF-90 may be a promising antitumor drug with potential application value.