SciPost Physics (Jan 2024)
Crossover from attractive to repulsive induced interactions and bound states of two distinguishable Bose polarons
Abstract
We study the impact of induced correlations and quasiparticle properties by immersing two distinguishable impurities in a harmonically trapped bosonic medium. It is found that when the impurities couple both either repulsively or attractively to their host, the latter mediates a two-body correlated behavior between them. In the reverse case, namely the impurities interact oppositely with the host, they feature anti-bunching. Monitoring the impurities relative distance and constructing an effective two-body model to be compared with the full many-body calculations, we are able to associate the induced (anti-) correlated behavior of the impurities with the presence of attractive (repulsive) induced interactions. Furthermore, we capture the formation of a bipolaron and a trimer state in the strongly attractive regime. The trimer refers to the correlated behavior of two impurities and a representative atom of the bosonic medium and it is characterized by an ellipsoidal shape of the three-body correlation function. Our results open the way for controlling polaron induced correlations and creating relevant bound states.