Stem Cell Research & Therapy (Dec 2019)

MicroRNA-145 engineered bone marrow-derived mesenchymal stem cells alleviated erectile dysfunction in aged rats

  • Qiwei Liu,
  • Yubin Cui,
  • Haojian Lin,
  • Daoyuan Hu,
  • Tao Qi,
  • Bo Wang,
  • Zhansen Huang,
  • Jun Chen,
  • Ke Li,
  • Hengjun Xiao

DOI
https://doi.org/10.1186/s13287-019-1509-1
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Aging is one of the dominant factors contributing to erectile dysfunction (ED), and effective treatments for age-associated ED are urgently demanded. In this study, the therapeutic efficiency of bone marrow-derived mesenchymal stem cells (BMSCs) overexpressing microRNA-145 (miR-145) was evaluated in ED. Methods Sixty male Sprague-Dawley rats (24 months old) were randomly divided into 4 treatment groups (n = 15/group): PBS (control), BMSCs, BMSCs transfected with a blank vector (vector-BMSCs), and BMSCs transfected with a lentivirus overexpressing miR-145 (OE-miR-145-BMSCs). Fourteen days after transplantation of BMSCs, erectile function was evaluated by measuring intra-cavernous pressure (ICP) and mean arterial pressure (MAP). Subsequently, penile erectile tissues were harvested and subjected to Masson staining, qRT-PCR, immunofluorescence staining, dual luciferase assay, and Western blot analysis. Results Fourteen days after transplantation, the ICP/MAP was 0.79 ± 0.05 in the OE-miR-145-BMSC group, 0.61 ± 0.06 in the BMSC group, 0.57 ± 0.06 in the vector-BMSC group, and 0.3 ± 0.01 in the PBS group. Treatment with OE-miR-145-BMSCs significantly improved ED (P < 0.05), and the treatment increased the smooth muscle content in the penis tissues of ED rats (P < 0.05). In the OE-miR-145-BMSC group, the expression levels of α-SMA, desmin, and SM-MHC were higher than they were in the other ED groups (P < 0.05). In addition, the levels of collagen 1, MMP2, and p-Smad2 in the BMSC-treated group, especially in the OE-miR-145-BMSC group, were lower than those in the control group (P < 0.05). Conclusions MicroRNA-145 engineered BMSCs effectively attenuate age-related ED. Transplantation of miR-145-overexpressing BMSCs may provide a promising novel avenue for age-associated ED therapy.

Keywords