International Journal of Molecular Sciences (Dec 2021)

Effects of Heme Oxygenase-1 on c-Kit-Positive Cardiac Cells

  • Qianhong Li,
  • Chandrashekhar Dasari,
  • Ding Li,
  • Asma Arshia,
  • Ahmed Muaaz Umer,
  • Mohamed Riad Abdelgawad Abouzid,
  • Yiru Guo,
  • Roberto Bolli

DOI
https://doi.org/10.3390/ijms222413448
Journal volume & issue
Vol. 22, no. 24
p. 13448

Abstract

Read online

Heme oxygenase-1 (HO-1) is one of the most powerful cytoprotective proteins known. The goal of this study was to explore the effects of HO-1 in c-kit-positive cardiac cells (CPCs). LinNEG/c-kitPOS CPCs were isolated and expanded from wild-type (WT), HO-1 transgenic (TG), or HO-1 knockout (KO) mouse hearts. Compared with WT CPCs, cell proliferation was significantly increased in HO-1TG CPCs and decreased in HO-1KO CPCs. HO-1TG CPCs also exhibited a marked increase in new DNA synthesis during the S-phase of cell division, not only under normoxia (21% O2) but after severe hypoxia (1% O2 for 16 h). These properties of HO-1TG CPCs were associated with nuclear translocation (and thus activation) of Nrf2, a key transcription factor that regulates antioxidant genes, and increased protein expression of Ec-SOD, the only extracellular antioxidant enzyme. These data demonstrate that HO-1 upregulates Ec-SOD in CPCs and suggest that this occurs via activation of Nrf2, which thus is potentially involved in the crosstalk between two antioxidants, HO-1 in cytoplasm and Ec-SOD in extracellular matrix. Overexpression of HO-1 in CPCs may improve the survival and reparative ability of CPCs after transplantation and thus may have potential clinical application to increase efficacy of cell therapy.

Keywords