EURO Journal on Computational Optimization (Feb 2016)
An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions
Abstract
We propose a forward–backward proximal-type algorithm with inertial/memory effects for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. Every sequence of iterates generated by the algorithm converges to a critical point of the objective function provided an appropriate regularization of the objective satisfies the Kurdyka-Łojasiewicz inequality, which is for instance fulfilled for semi-algebraic functions. We illustrate the theoretical results by considering two numerical experiments: the first one concerns the ability of recovering the local optimal solutions of nonconvex optimization problems, while the second one refers to the restoration of a noisy blurred image.