Journal of the Formosan Medical Association (Jun 2019)

Promoting dentinogenesis of DPSCs through inhibiting microRNA-218 by using magnetic nanocarrier delivery

  • Karen Chang,
  • Rung-Shu Chen,
  • Fu-Hsiung Chang,
  • Min-Huey Chen

Journal volume & issue
Vol. 118, no. 6
pp. 1005 – 1013

Abstract

Read online

Purpose: The purposes of this study are to explore the roles of microRNA-218 (miR-218) delivered by a newly designed magnetic nanocarrier: GCC-Fe3O4 (GCC-Fe) in dentinogenesis potentials of human dental pulp stem cells (DPSCs). Methods: Human DPSCs were obtained from impacted wisdom teeth of healthy donors under the permission of National Taiwan University Hospital institutional review board (NTUH IRB). Meanwhile, the transfection efficiency of GCC-Fe was evaluated. After transfecting miR-218 (GFm) and miR-218 inhibitor (GFmi) into DPSCs for 24 h, the dentinogenesis potentials of DPSCs were then evaluated with Alizarin Red S (ARS) staining with or without induction for 1, 4, and 9 days. Possible signaling pathway was further investigated by Western Blotting. Results: We found that the magnetic GCC-Fe3O4 nanocarrier was serum endurable with about 90% transfection efficiency in DPSCs under normal culture condition. Results of ARS staining indicated that miR-218 was negatively regulating dentinogenesis potentials of DPSCs after induction. When the miR-218 inhibitor was delivered, calcium deposits in DPSCs were increased significantly. We also discovered that the effects of miR-218 were further regulated through the MAPK/ERK pathway. Conclusion: We identified that miR-218 had a negative regulation role in the dentinogenesis of DPSCs. By inhibiting miR-218, the mineralization potentials of DPSCs were promoted after induction. In addition, we also confirmed that the highly efficient magnetic GCC-Fe3O4 nanocarrier not only was suitable for gene manipulation in biomedical studies, but also ideal for future clinical applications due to its serum endurable property. Keywords: microRNA, miR-218, Dental pulp stem cells, Dentinogenesis, Magnetic nanocarrier