PLoS ONE (Jan 2020)
Efficient and secure three-party mutual authentication key agreement protocol for WSNs in IoT environments.
Abstract
In the Internet of Things (IoT), numerous devices can interact with each other over the Internet. A wide range of IoT applications have already been deployed, such as transportation systems, healthcare systems, smart buildings, smart factories, and smart cities. Wireless sensor networks (WSNs) play crucial roles in these IoT applications. Researchers have published effective (but not entirely secure) approaches for merging WSNs into IoT environments. In IoT environments, the security effectiveness of remote user authentication is crucial for information transmission. Computational efficiency and energy consumption are crucial because the energy available to any WSN is limited. This paper proposes a notably efficient and secure authentication scheme based on temporal credential and dynamic ID for WSNs in IoT environments. The Burrows-Abadi-Needham (BAN) logic method was used to validate our scheme. Cryptanalysis revealed that our scheme can overcome the security weaknesses of previously published schemes. The security functionalities and performance efficiency of our scheme are compared with those of previous related schemes. The result demonstrates that our scheme's security functionalities are quantitatively and qualitatively superior to those of comparable schemes. Our scheme can improve the effectiveness of authentication in IoT environments. Notably, our scheme has superior performance efficiency, low computational cost, frugal energy consumption, and low communication cost.