Environmental Sciences Proceedings (Nov 2023)
An Attempt: A Modified Semi-Empirical Approach Based on Retrieving Soil Fluoride from Agricultural Patches Using Sentinel-1 SAR Data
Abstract
Plant growth and health are affected by 0.06–0.09% of crustal fluoride. A semi-empirical model estimated wet soil fluoride using Sentinel-1 5.405 GHz data as dependent on dielectric components and loss angles. Mineral surface charges and electrical potential limited clay soil ion mobility via moisture and permeability. Real and imaginary dielectric components approximated a 3° to 4° loss angle in lab soil samples with high and low fluoride electrical conductivity. An estimated percentage of dielectric component loss over wide areas could have implied fluoride. Finally, linear regression between field fluoride value and conductance loss was used to estimate fluoride. The statistical differences (R2 = 0.86, RMSE = 1.90, and Bias = 0.35) between predicted and simulated fluoride levels over clay soil and soil with different vegetation development suggest that C-band SAR data may detect fluoride.
Keywords