Clinical Ophthalmology (Aug 2024)
A Comprehensive Evaluation of 16 Old and New Intraocular Lens Power Calculation Formulas in Pediatric Eyes
Abstract
Asaf Achiron,1 Tal Yahalomi,2 Amit Biran,1 Eliya Levinger,1 Eyal Cohen,1 Uri Elbaz,3 Asim Ali,4,5 Kamiar Mireskandari,4,5 Raimo Tuuminen,6,7 Oleksiy V Voytsekhivskyy8 1Tel Aviv Sourasky Medical Center, Tel Aviv, Israel and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; 2Department of Ophthalmology, Samson Assuta Ashdod Hospital and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel; 3Department of Ophthalmology, Rabin Medical Center, Petach-Tikva and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; 4Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada; 5Department of Ophthalmology and Vision Sciences, the Hospital for Sick Children, Toronto, Ontario, Canada; 6Helsinki Retina Research Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland; 7Department of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland; 8Kyiv Clinical Ophthalmology Hospital Eye Microsurgery Center, Kyiv, UkraineCorrespondence: Oleksiy V Voytsekhivskyy, Kyiv Clinical Ophthalmology Hospital Eye Microsurgery Center, Komarov Ave. 3, Medical City, Kyiv, 03680, Ukraine, Tel +38067-584-28-11, Email [email protected]: To compare the accuracy of 16 intraocular lens (IOL) power calculation formulas in pediatric cataract eyes.Patients and Methods: The data records of pediatric patients who had been implanted with three IOL models (SA60AT, MA60AC, and enVista-MX60) between 2012 and 2018 were analyzed. The accuracy of 16 IOL power calculation methods was evaluated: Barrett Universal II (BUII), Castrop, EVO 2.0, Haigis, Hill-RBF 3.0, Hoffer Q, Hoffer QST, Holladay 1, Kane, LSF AI, Naeser 2, Pearl-DGS, SRK/T, T2, VRF, and VRF-G. The non-optimized (ULIB/IOLcon) and optimized constants were used for IOL power calculation. The mean prediction error (PE), Performance Index (FPI), and all descriptive statistics were calculated.Results: Ninety-seven eyes of 97 pediatric patients aged 13.2 (IQR 11.2– 17.1) were included. No statistically significant difference (HS-test) was observed (p > 0.818) except for the Hoffer Q, and Naeser 2 (P = 0.014). With optimized lens constants, the best FPI indices were obtained by Hoffer Q (0.256) and VRF-G (0.251) formulas, followed by Hill-RBF 3.0 and BUII, with an index of 0.248. The highest FPI indices with non-optimized constants showed SRK/T and T2 formulas (0.246 and 0.245, respectively), followed by VRF-G and Holladay 1, with an index of 0.244. The best median absolute error values (MedAE) were achieved by Hoffer Q (0.50 D), VRF-G (0.53 D), and Hill-RBF 3.0 (0.54 D), all P ≥ 0.074.Conclusion: Our results place the Hoffer Q, VRF-G, Hill-RBF 3.0, and BUII formulas as more accurate predictors of postoperative refraction in pediatric cataract surgery.Keywords: IOL power, formulas, pediatric eyes, calculation, axial length