Aerospace (May 2021)
Design and Optimization of a Large Turboprop Aircraft
Abstract
This paper proposes a feasibility study concerning a large turboprop aircraft to be used as a lower environmental impact solution to current regional jets operated on short/medium hauls. An overview of this market scenario highlights that this segment is evenly shared between regional turboprop and jet aircraft. Although regional jets ensure a large operative flexibility, they are usually not optimized for short missions with a negative effect on block fuel and environmental impact. Conversely, turboprops represent a greener solution but with reduced passenger capacity and speed. Those aspects highlight a slot for a new turboprop platform coupling higher seat capacity, cruise speed and design range with a reduced fuel consumption. This platform should operate on those ranges where neither jet aircraft nor existing turboprops are optimized. This work compares three different solutions: a high-wing layout with under-wing engines installation and both two- and three-lifting-surface configurations with low-wing and tail tips-mounted engines. For each concept, a multi-disciplinary optimization was performed targeting the minimum block fuel on a 1600 NM mission. Optimum solutions were compared with both a regional jet such as the Airbus A220-300 operated on 1600 NM and with a jet aircraft specifically designed for this range.
Keywords