Remote Sensing (Jul 2024)

Preliminary Assessment of On-Orbit Radiometric Calibration Challenges in NOAA-21 VIIRS Reflective Solar Bands (RSBs)

  • Taeyoung Choi,
  • Changyong Cao,
  • Slawomir Blonski,
  • Xi Shao,
  • Wenhui Wang,
  • Khalil Ahmad

DOI
https://doi.org/10.3390/rs16152737
Journal volume & issue
Vol. 16, no. 15
p. 2737

Abstract

Read online

The National Oceanic and Atmospheric Administration (NOAA) 21 Visible Infrared Imaging Radiometer Suite (VIIRS) was successfully launched on 10 November 2022. To ensure the required instrument performance, a series of Post-Launch Tests (PLTs) were performed and analyzed. The primary calibration source for NOAA-21 VIIRS Reflective Solar Bands (RSBs) is the Solar Diffuser (SD), which retains the prelaunch radiometric calibration standard from prelaunch to on-orbit. Upon reaching orbit, the SD undergoes degradation as a result of ultraviolet solar illumination. The rate of SD degradation (called the H-factor) is monitored by a Solar Diffuser Stability Monitor (SDSM). The initial H-factor’s instability was significantly improved by deriving a new sun transmittance function from the yaw maneuver and one-year SDSM data. The F-factors (normally represent the inverse of instrument gain) thus calculated for the Visible/Near-Infrared (VISNIR) bands were proven to be stable throughout the first year of the on-orbit operations. On the other hand, the Shortwave Infrared (SWIR) bands unexpectedly showed fast degradation, which is possibly due to unknown substance accumulation along the optical path. To mitigate these SWIR band gain changes, the NOAA VIIRS Sensor Data Record (SDR) team used an automated calibration software package called RSBautoCal. In March 2024, the second middle-mission outgassing event to reverse SWIR band degradation was shown to be successful and its effects are closely monitored. Finally, the deep convective cloud trends and lunar collection results validated the operational F-factors. This paper summarizes the preliminary on-orbit radiometric calibration updates and performance for the NOAA-21 VIIRS SDR products in the RSB.

Keywords