Agronomy (Nov 2022)

Effects of Applying Different Organic Materials on Grain Yield and Soil Fertility in a Double-Season Rice Cropping System

  • Jing Yang,
  • Bin Liao,
  • Changyu Fang,
  • Mohamed S. Sheteiwy,
  • Zhenxie Yi,
  • Sichao Liu,
  • Chao Li,
  • Guozhu Ma,
  • Naimei Tu

DOI
https://doi.org/10.3390/agronomy12112838
Journal volume & issue
Vol. 12, no. 11
p. 2838

Abstract

Read online

Double-cropping rice cultivation reduces soil fertility, and the extensive use of chemical fertilizers has harmful effects on both the environment and grain yield. The application of organic materials could be used as a practical strategy to maintain soil fertility and improve grain yield in a double-season rice cropping system. For this purpose, field experiments with six growing seasons over three years, from 2016 to 2018, were conducted to assess the effects of five organic materials (biochar, Chinese milk vetch, rice straw, rapeseed cake fertilizer, and manure) on the grain yield and soil fertility, aiming to save about 25% of the chemical nitrogen (N) fertilizer required for all rice growing stages. The result showed that, compared with CK (the most common dose of fertilizer in this study region; 100% chemical fertilizer without organic fertilizer), the grain yield and soil fertility of double-cropped rice were increased after applying organic fertilizers for three consecutive years. Specifically, the CRC treatment (Chinese milk vetch (10.77 t ha−1 in fresh)/rice straw (26.51 t ha−1 in fresh) + 75% chemical fertilizer) showed significantly higher rates of effective panicles (4.65–10.92%) and annual grain yield (8.00–8.82%). The total N, total phosphorus (P), total potassium (K), alkaline N, and available P content in the CRC soil were significantly increased by 11.85%, 12.22%, 15.08%, 23.32%, and 41.04%, respectively, relative to CK. The decomposition of the applied Chinese milk vetch and rice straw combined with 75% chemical fertilizer resulted in more soil humus (9.50 g kg−1), humic acid (3.19 g kg−1), fulvic acid (3.26 g kg−1), and active organic carbon (5.78 g kg−1) and a significantly higher carbon pool management index (13.5%), as well as significantly higher soil urease activity (18.10%) and acid phosphatase activity (17.64%). Therefore, in this study, Chinese milk vetch (10.77 t ha−1 in fresh) in the early rice season/rice straw (26.51 t ha−1 fresh) in the late rice season + 75% chemical fertilizer treatment was the optimal dose for the double-season rice cropping system. It resulted in higher rice yields and has the potential to be used for more sustainable soil fertility.

Keywords