AgriEngineering (Jun 2024)

Development of a Cross-Platform Mobile Application for Fruit Yield Estimation

  • Brandon Duncan,
  • Duke M. Bulanon,
  • Joseph Ichiro Bulanon,
  • Josh Nelson

DOI
https://doi.org/10.3390/agriengineering6020105
Journal volume & issue
Vol. 6, no. 2
pp. 1807 – 1826

Abstract

Read online

The Fruit Harvest Helper, a mobile application developed by Northwest Nazarene University’s (NNU) Robotics Vision Lab, aims to assist farmers in estimating fruit yield for apple orchards. Currently, farmers manually estimate the fruit yield for an orchard, which is a laborious task. The Fruit Harvest Helper seeks to simplify their process by detecting apples on images of apple trees. Once the number of apples is detected, a correlation can then be applied to this value to obtain a usable yield estimate for an apple tree. While prior research efforts at NNU concentrated on developing an iOS app for blossom detection, this current research aims to adapt that smart farming application for apple detection across multiple platforms, iOS and Android. Borrowing ideas from the former iOS app, the new application was designed with an intuitive user interface that is easy for farmers to use, allowing for quick image selection and processing. Unlike before, the adapted app uses a color ratio-based image-segmentation algorithm written in C++ to detect apples. This algorithm detects apples within apple tree images that farmers select for processing by using OpenCV functions and C++ code. The results of testing the algorithm on a dataset of images indicate an 8.52% Mean Absolute Percentage Error (MAPE) and a Pearson correlation coefficient of 0.6 between detected and actual apples on the trees. These findings were obtained by evaluating the images from both the east and west sides of the trees, which was the best method to reduce the error of this algorithm. The algorithm’s processing time was tested for Android and iOS, yielding an average performance of 1.16 s on Android and 0.14 s on iOS. Although the Fruit Harvest Helper shows promise, there are many opportunities for improvement. These opportunities include exploring alternative machine-learning approaches for apple detection, conducting real-world testing without any human assistance, and expanding the app to detect various types of fruit. The Fruit Harvest Helper mobile application is among the many mobile applications contributing to precision agriculture. The app is nearing readiness for farmers to use for the purpose of yield monitoring and farm management within Pink Lady apple orchards.

Keywords