Frontiers in Microbiology (Sep 2018)
Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future
- Sharon A. Huws,
- Christopher J. Creevey,
- Linda B. Oyama,
- Itzhak Mizrahi,
- Stuart E. Denman,
- Milka Popova,
- Rafael Muñoz-Tamayo,
- Evelyne Forano,
- Sinead M. Waters,
- Matthias Hess,
- Ilma Tapio,
- Hauke Smidt,
- Sophie J. Krizsan,
- David R. Yáñez-Ruiz,
- Alejandro Belanche,
- Leluo Guan,
- Robert J. Gruninger,
- Tim A. McAllister,
- C. Jamie Newbold,
- Rainer Roehe,
- Richard J. Dewhurst,
- Tim J. Snelling,
- Mick Watson,
- Garret Suen,
- Elizabeth H. Hart,
- Alison H. Kingston-Smith,
- Nigel D. Scollan,
- Rodolpho M. do Prado,
- Eduardo J. Pilau,
- Hilario C. Mantovani,
- Graeme T. Attwood,
- Joan E. Edwards,
- Neil R. McEwan,
- Steven Morrisson,
- Olga L. Mayorga,
- Christopher Elliott,
- Diego P. Morgavi
Affiliations
- Sharon A. Huws
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
- Christopher J. Creevey
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
- Linda B. Oyama
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
- Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
- Stuart E. Denman
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
- Milka Popova
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
- Rafael Muñoz-Tamayo
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
- Evelyne Forano
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
- Sinead M. Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Ireland
- Matthias Hess
- College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
- Ilma Tapio
- Natural Resources Institute Finland, Jokioinen, Finland
- Hauke Smidt
- 0Department of Agrotechnology and Food Sciences, Wageningen, Netherlands
- Sophie J. Krizsan
- 1Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, Umeå, Sweden
- David R. Yáñez-Ruiz
- 2Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
- Alejandro Belanche
- 2Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
- Leluo Guan
- 3Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Robert J. Gruninger
- 4Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Tim A. McAllister
- 4Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- C. Jamie Newbold
- 5Scotland's Rural College, Edinburgh, United Kingdom
- Rainer Roehe
- 5Scotland's Rural College, Edinburgh, United Kingdom
- Richard J. Dewhurst
- 5Scotland's Rural College, Edinburgh, United Kingdom
- Tim J. Snelling
- 6The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
- Mick Watson
- 7The Roslin Institute and the Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
- Garret Suen
- 8Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Elizabeth H. Hart
- 9Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- Alison H. Kingston-Smith
- 9Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- Nigel D. Scollan
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
- Rodolpho M. do Prado
- 0Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
- Eduardo J. Pilau
- 0Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
- Hilario C. Mantovani
- 1Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
- Graeme T. Attwood
- 2AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
- Joan E. Edwards
- 3Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Neil R. McEwan
- 4School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
- Steven Morrisson
- 5Sustainable Livestock, Agri-Food and Bio-Sciences Institute, Hillsborough, United Kingdom
- Olga L. Mayorga
- 6Colombian Agricultural Research Corporation, Mosquera, Colombia
- Christopher Elliott
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
- Diego P. Morgavi
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
- DOI
- https://doi.org/10.3389/fmicb.2018.02161
- Journal volume & issue
-
Vol. 9
Abstract
The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in “omic” data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.
Keywords